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This paper considers the motion of a torsion viscosimeter that permits a conclusion about the rheological type
of the liquid filling it. We have developed a theory of identification of nonlinear properties based on the use
of the effective values of viscosity for each half-period and analytical solutions for linear liquids. The ques-
tions of the sensitivity that should be taken into account in planning an optimal experiment have been high-
lighted.

Introduction. The method of torsional vibrations seems to be the most suitable for studying the viscous prop-
erties of liquid metals [1]. The conditions realized in the torsion viscosimeter — the change with time in the regime
of medium deformation and the possibility of realizing ultimate small deformations and their rates — enable one to
make visible even weak Newton effects in media usually considered to be Newtonian liquids (see also [2]). Moreover,
here the conclusion about the rheological character is based on measurements of the vibration parameters which can be
taken with a high accuracy (D10–5) impossible for other methods.

Despite the recent enhanced interest in the possibility of a non-Newtonian behavior of melts, similar investi-
gations have been carried out only episodically [3, 4], and the area of limit low rates of shear from this standpoint
have not been investigated at all. In the torsion-vibration method, results are traditionally interpreted from the point of
view of the Newtonian model, which, in particular, is due to the lack of theory. The known solutions of the conjugate
problem on the motion of a cylinder and a nonlinear specimen [5] have been obtained numerically, since, first of all,
the change of sign of the deformation rate in the course of time and along the spatial coordinate makes it impossible
to find an exact solution, which hampers practical use of results. Therefore, we shall present an analytical method for
estimating the properties, which does not require the execution of numerical procedures, with the example of rheo-
stable liquids. We shall present the results for the case of a long cylinder.

Formulation of the Problem. Let a hollow circular cylinder be suspended along its axis by an elastic cord
and execute torsional vibrations with period τ0 and decay decrement δ0. When the crucible is filled with the liquid, as
a consequence of its attraction by the walls moving with acceleration, the effective moment of inertia of the suspended
system and the period of vibrations increase: τ > τ0; there is also an increase in the rate of their damping because of
the additional dissipation of mechanical energy caused by the viscous friction: δ > δ0. The problems are as follows.
The direct problem is to determine the properties of the liquid and the inverse problems is to predict the law of vi-
brations of the vessel and its conjugate: the motion of the viscosimeter is directly associated with the liquid motion
initiated by it. Mathematical introduction into the method of measurements was made, in particular, in [1, 5, 6]. We
shall describe the experimental conditions by the dimensionless complexes A = MR2 ⁄ 2K, ξ0 = R ⁄ d.

Linear Liquids. Note some of the features of estimating the properties of linear media, which is also useful
in interpreting results for nonlinear media. A cylinder filled with linear, viscous or viscoelastic media upon completion
of the transient process executes regular vibrations: α(T) = α0 exp (−sT). The properties of such liquids can be de-
scribed in terms of complex viscosity (e.g., [7]) and estimated from the quality function minimum condition

f = √cReFRe
2  + cImFIm

2  , (1)
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F = 4A √s  J2 (√s  ξ0√γ) + ϕξ0 √γ  J1 (√s  ξ0 √γ) , (2)

where ϕ = ∆λ−1
1 + (λ−2 + λ−2∆2)−1

 + iλ−1
1 − (λ−2 + λ−2∆2)−1

; δ0 = 0; γ =  1, γ = 1 − sWe and γ =

[1 − 1 ⁄ (sWe)]−1 for Newtonian [1, 6], Maxwell, and Voigt liquids, respectively.
Relations taking into account the transient processes in Newtonian liquids are given in [6], where it has been

shown that besides the fundamental harmonic there are aperiodic components. The irregular processes in viscoelastic

media can be investigated in terms of analogous dependences [6], in which instead of ξ0 for Maxwell and Voigt liq-

uids the expressions ξ0√(1 + SWe)  and ξ0√[1 + 1 ⁄ (SWe)]−1  are given and the roots of S have values other than for a

viscous liquid, including complex ones, and S = −s corresponds to regular vibrations.
For a Newtonian liquid [1] the dimensionless period λ decreases with increasing ξ0 mainly on the interval

ξ0 2 (2; 12), and the behavior of δ depends on ξ0: at ξ0 > ξ0δ the decrement decreases with increasing ξ0, and at
ξ0 < ξ0δ it increases (Fig. 1). For a long cylinder, ξ0δ D 4.3, and with decreasing height this peak of the function δ =
δ(ξ0) shifts towards large values of ξ0. Then in the region of this maximum the sensitivity of viscosity to the decre-
ment and, consequently, also the error in ν due to the δ measurement errors are very high, as is the sensitivity to er-
rors in a period at ξ0 values close to zero and high values of ξ0. As A decreases, the curves in Fig. 1 become more
sloping, i.e., the sensitivities, along with the errors that are due to one and the same measurement accuracy, increase.
According to [1], on the left of ξ0δ the approximation is highly viscous, at ξ0 > 0 it is poorly viscous, and the interval
between them corresponds to the intermediate viscosity. As the elastic properties strengthen, the number of extrema on
the ξ0 dependences of vibration parameters increases, which is determined by the length ratio between the viscous and
the elastic waves.

The results of the calculations in terms of the sensitivity theory for viscous media can be found, for example,
in [8]. For studying the viscoelastic properties, the method of forced vibrations [9] is preferable, and the method of
damped vibrations is poorly effective for investigating, first of all, slightly elastic properties because of the narrow range
of ξ0 values. An adequate region for simultaneous measurement of viscous and elastic properties is the region where the
values of the viscous and the elastic waves are close. Then the sensitivities ψy,x = (x ⁄ y) ∂y ⁄ ∂x of the properties y to
errors in the parameters of the facility and vibrations x are minimal and, for example, ψWe,A D 0.1, ..., 1, and as the We
number decreases by an order of magnitude, the value of ψWe,A increases by a factor of 5–10 and then by about an order
of magnitude each time the We number further decreases by an order of magnitude. In the calculation by FIm, the sen-
sitivity ψWe,λ is usually somewhat higher, as it is at We = 0, and with increasing We the number of local minima f (1)
increases. Therefore, in the presence of errors in the data ∆x even for a viscous medium one can obtain We values close
to possibly observable but far from correct ones. For instance, at A = 0.15 ξ0 = 12 and ∆ξ0

 D 10−3, ∆A D 10−2,
∆τ D 104, ∆δ D 10−2 we obtain We D 102.

Nonlinear Liquids. Specific features of the hydrodynamics. The regularities in the flow of a liquid determin-
ing the response of vibration parameters to its rheological properties can be explained graphically by means of a model
of a nonlinearly viscous medium, e.g., when the effective viscosity is equal to bDm−1. At m < 1 (pseudoplastic liquids),
the flow curves have a convexity upwards, to the stress axis, at m > 1 (dilatant liquids) they have a convexity down-
wards, and for a Newtonian liquid, at m = 1 these are straight lines. Under the viscosimeter conditions the rate of

Fig. 1. Dependences δ = δ(ξ0) (1) and (λ2 − 1) = λ
~

(ξ0) (2).
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shear D < 1 and the effective viscosity for m < 1 has a value higher than for m = 1 prior to the point of intersection
of these flow curves (at D = 1), and with increasing D it becomes lower [2]. The penetration depth of the viscous
wave is proportional to this viscosity and for a Newtonian liquid it is D10d, and, e.g. for media with m < 1 and
D < 1 it decreases with increasing D and decreasing m. It should be noted that the boundary of the domain where the
velocity is close to zero is closer to the wall at larger values of m. All other things being equal, D

~
 is the larger the

higher the value of m. As the elastic properties strengthen, the flow occurs in a larger volume, and the velocity profile
approaches a rectilinear one.

When the viscosimeter is filled with a Bingham liquid [5], a solid core is always present near its axis, where
the shear stresses do not exceed the yield stress. In the flow, there is also a thin solid layer (or several layers) that
arises near the cylinder surface and moves to the core. In so doing, the core boundary moves from the center and then
the zones merge. In the next quarter of the period reverse motion occurs, and so on. Here the region of the developed
flow increases compared to the Newtonian liquid as a result of the entrainment of the liquid by the solid layers, which
qualitatively agrees with the result for pseudoplastic media.

Identification of the type of liquid. The experimental identification of the rheological belonging of nonlinear
media is based on the experimentally observed features associated with a break of isosynchronism of the vibration
process. For such media, we shall determine the vibration parameters for each half-period:

τ = 2tτ ,   δ = 2 ln α1
 ⁄ α2 . (3)

The regularities in the behavior of τ and δ depending on ξ0 for Newtonian liquids (see Fig. 1) are also con-

firmed for the case of nonlinear viscous media if we consider, as ξ0, the effective value ξ0eff, which for such a liquid

is ξ0nv = ξ0
 ⁄ √bD

~m−1  and the value of ξ0nvδ D 4.3. With increasing vibration number N the amplitude value of D
~

 de-

creases. Therefore, for dilatant media the effective viscosity decreases and ξ0nv increases, and for pseudoplastic media

— vice versa, and in the course of time λ and δ change accordingly. Thus, for a dilatant medium, if ξ0nv at the be-

ginning of vibrations corresponds to the low-viscosity approximation, then the vibration parameters decrease in the
course of time, and if it corresponds to the highly viscous approximation, then δ = δ(N) passes through the maximum.

At ξ0nv close to ξ0nvδ high values of δ are realized and vibrations decay faster than the dependence δ = δ(ξ0eff) be-

gins to decrease. For Newtonian liquids, at high ξ0 with increasing ξ0 the period decreases to a lesser extent than the

decrement, and for dilatant media the change to the asymptotic regime characterized by slightly varying with time val-

ues is also faster for λ than for δ.
In the process of damping, the region of solid flow in viscoplastic liquids grows and then fills the entire vis-

cosimeter at any instant of time. In this case, the effective moment of inertia of the systems reaches its largest value
equal to the sum of the moments of inertia of the frozen liquid and the empty suspended system, and, along with it,
the period directly proportional to the square root of this value also reaches its largest value: λsf = (1 + A)1 ⁄ 2. Then
the value of δ is minimal and coincides with δ0 because of the absence of mechanical energy dissipation due to the
viscous friction. If from the beginning of vibrations an effective value of ξ0vp < ξ0vpδ is realized, then this function de-
creases. With decreasing ξ0eff in the interval corresponding to highly viscous media the value of δ decreases more sig-
nificantly than increases, down to ξ0vpδ.

For elastic viscoplastic media, on the dependences of the parameters of vibrations depending on their number,
minima can be observed. This is explained from the viewpoint of nonlinear models by the presence of one extremum
on the dependence δ = δ(ξ0) for a Newtonian liquid and the increase in their number with strengthening elastic prop-
erties, whereas with increasing N, 1 ⁄ D

~
, and effective viscosity ξ0eff decreases and some Weeff increases. On the curves

of δ = δ(N) and λ = λ(N) there is a jump at a nonanalytical behavior of the flow caused, e.g., by the existence of the
medium at equal rates of shear or stresses in various microscopic states.

Estimation of the liquid properties. The specific features of vibration processes serve as the basis in choosing
the rheological type, within which in the general case, according to the law of vibrations, one determines the proper-
ties of a liquid by the methods of parametric identification that make it possible to establish observability and identi-
fiability of a system, find covariance matrices of errors of parameters being evaluated by such for quantities being
measured, design an optimal experiment, etc. [10]. For estimation, one can use some special techniques based, in par-
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ticular, for viscoplastic media on the observation of the number of vibrations before the solid regime sets in, and for
nonlinear viscous media — on measuring the damping period and decrement at the beginning of the vibration process
and asymptotic values at its end [5]. We turn our attention to the algorithm of the analytical method.

1. Let the input data be known from an experiment, whose conditions are as follows: a) the facility parame-
ters: A, ξ0; b) the vibration parameters: the frequency ω and the decrement ∆ determined by the half-period n =
N ⁄ 2; the initial shift of the crucible: α0 D 6o = 0.1047.

2. The values of α0n are determined for each n by α0 and δ = δ(n): α0n+1 = α0n
 ⁄ exp (δn

 ⁄ 2). In another vari-
ant, these values are known from the experiment.

3. From the viscosimetric equation (2)

F (ξ0eff) = 4A √s  J2 (√s  ξ0eff) + ϕξ0effJ1 (√s  ξ0eff) = 0 , (4)

where for the Bessel functions the integral representations from [11] can be used, the effective values ξ0eff are esti-
mated by ∆ and ω for each half-period.

4. According to the dependence for the rate of shear for the Newtonian liquid

D = Re 



− ξ0α0s √s  J2 (√s  ξ0) ⁄ J1 (√s  ξ0) exp (− sT)





 , (5)

for nonlinear liquids we obtain

D
~

 = 



Re 




− ξ0effα0s √s  

J2 (√s  ξ0eff)

J1 (√s  ξ0eff)
 k







 ,   k = ∆ 

1 − exp (− ∆π)

π (∆2
 + 1)

 + 2 
exp (− ∆π ⁄ 2)

π (∆2
 + 1)

 , (6)

where α0, s (including ω and ∆), and ξ0eff are determined for each n.
In view of the expression for ξ0eff and (6), e.g., for estimating b and m, we solve the extreme problem:

feff (b, m) = √∑ 

n


ξ0

 ⁄ √bD
~

n
m−1

 − ξ0nvn


2

 → min ,
(7)

where the form of the first term in the general case is determined by the rheological model.
5. In estimating the error in the nonlinear properties and the applicability limit of the method in the limiting

cases of high- and low-viscous media, it is necessary to take into account the sensitivity of properties to errors in ex-
perimental data [5]. At a small number of experimental points function (7) has a ravine on the plane (b, m) with a
slight change in its values along the axis, where local minima can be observed; the number of these minima can be
decreased by changing A. Such a situation can result, in particular, from an insignificant change in ω and ∆ in the
damping process, and then, e.g., for dilatant media one should decrease ξ0nv at N → 1. Note that the error in the es-
timated value of ξ0nv can reach tens of percent [1], and errors in the decrement can lead to errors in the α0n values
at large n of a few percent if they are determined by α0 at T = 0 rather than from the experiment. The method is
adequate for describing viscoplastic media when in the solid regime ξ0vp D 0 and upon some modification can be used
to investigate viscoelastic properties.

It has been established from the numerical calculations in terms of the sensitivity theory that in the presence
of 20–50 measurement points and a change in the process of damping in the vibration parameters, usually the decre-
ment, by 20% on average, one can achieve an error in the liquid properties of no more than 10% (the measurement
accuracy of the period and decrement therewith is no worse than 0.1%), also taking into account the general recom-
mendations on the sensitivity of ξ0 to ∆ and λ for Newtonian liquids. The value of the rate of shear (6) reflects the
effective value, which permits taking into account by default the features causing difficulties otherwise. Thus, the law
D = D(T) for nonlinear media differs from the harmonic law, also for each n, and on its spectrum at a pronounced
nonlinearity the peak intensity ratio is I3ω ⁄ IωD 0.1, and for Bingham in D

~
 it is necessary to take into account the

stage of vibrations in the presence of a solid zone near the wall. In the general case, the error in D
~

 is equivalent to
the error in α0n and its influence can be elucidated within the sensitivity ψb,α0

, ψm,α0
, and so on.
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In the case of a finite-height crucible, the dependence for the rate of shear in (5) also takes into account the
other components of the tensor of deformation rates, in particular, under traditional assumptions the expression for the
azimuthal velocity from [1, 6] is used. The dependences can be used to solve the inverse problem and in investigating
the identifiability of properties and choosing optimal conditions. Then for a more accurate description of the crucible
motion it is necessary to take into account the transient processes with the help of relations for a linear medium con-
structed in terms of ξ0eff with a large number of points for s, D

~
, etc. by determining these characteristics locally rather

than by the half-period. In using the method for the regime of forced vibrations, in relation (6) the quantities k =
2 ⁄ π, s = iω, α0 is the vibration amplitude of the crucible, and the experimental points are selected, e.g., from the de-
pendences of the amplitude and phase on the vibration frequency.

Examples. Nonlinear viscous media. We are given: A = 0.1, ξ0 = 8, α0 = 0.1047; the change in the vibration
parameters in the damping process (Fig. 2) without account for the transient processes (obtained by the numerical
simulation [5] for a medium with b = 2.4, m = 1.8); the error in the vibration law: ∆∆, ∆ω D 0.1%, it is not taken
into account in the other data. It is required to determine the liquid properties.

We determine by the values of ∆ (Fig. 2) the initial angular displacement amplitude in each half-period
α0n, and by ∆ and ω (Fig. 2) the effective values of ξ0nv (Fig. 3). Judging by the character of the change in the
vibration parameters and ξ0nv, the liquid belongs to the nonlinear viscous type, and, more precisely, to dilatant
media. Estimating b and m by relation (7), we obtain b = 2.507 and m = 1.843. Such a "good" situation could
have resulted from a combination of errors and, therefore, it is necessary to estimate their sensitivities to the facil-
ity and vibration parameters. Thus, the values of ψm,ξ0nv

 and Ψm,α0
 determined by (7) are small, and those of

ψb,ξ0nv
 and ψb,α0

 are of the order of one. In estimating ξ0nv, the sensitivity ψξ0nvω determined by (4) is D50 on
average, which yields an error in ξ0nv of D5%. The largest deviation from the ideal value is, as in the traditional
theory, due to the high sensitivity to the frequency determined in terms of FIm (4) (in the region of the peak of
the function ∆ = ∆(ξ0) the values of ψξ0nv,∆ are also high). Note that the quality function FRe is usually more
sloping, i.e., the influence of errors in the viscosimeter parameters for it is stronger, and the more pronounced
minimum of the function FIm undergoes a greater shift as a consequence of errors in the frequency. In the given
example (where the values of ψξ0,ω are not high), it is expedient to perform calculations with account for both
parts of the viscosimetric function. Taking into account the obtained values of ψy,x and the accuracy of the pa-
rameters entering into (7), we obtain that the maximum admissible errors in the values of b D 10% and m D 3.5%,
and the b and m estimates fall within these intervals.

At m not close to 1 the quality function can be formed by the D
~

n values: by (6) and [(ξ0
2 ⁄ ξ0nvn) ⁄ b]1−m. Ac-

cording to the analysis of the sensitivity, in this case smaller interval estimates can be obtained, as, e.g., in the given
calculation. Performing minimization, we obtain b = 2.305 and m = 1.836. In both cases, we have used for the esti-
mation all experimental points for the N values given in Fig. 2.

Viscoplastic media. We are given: A = 0.2, ξ0 = 12, α0 = 0.1047; the relations ∆ = ∆(N) and ω = ω(N) (Fig. 4:
for a medium with b = 1, Bm = 0.4 [5], where the effective viscosity in the viscoplastic flow is b(1 + Bm ⁄ D)); ∆∆,
∆ω D 0.5%. It is required to determine b and the Bingham number.

Fig. 2. Dependences of vibration parameters (1 − ω) = ω~(N) (1) and ∆ = ∆(N) (2)
for dilatant liquids.

Fig. 3. Dependence ξ0nv = ξ0nv(N).
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A decrease in the frequency in the damping process points to a (visco- and pseudo-) plastic type of the
liquid. An abrupt, rather than asymptotic, change to the isosynchronous operation, when, in addition, ω D 1 ⁄ √1 + A ,
and ∆ D 0, shows that the liquid has a yield point. In view of the expression for ξ0vp function (7) changes ade-
quately. The values of the properties corresponding to the minimum feff deviate from the ideal ones by less than
20% (b = 0.839, Bm = 0.332) and correspond to the confidence intervals obtained from the point of view of sen-
sitivity. In describing the behavior by the nonlinear viscous model, we obtain b D 1 and m D 0.25, and the goal
function, even at N 2 [1; 12], i.e., without account for the isosynchronous operation, takes on values in the opti-
mum higher by an order of magnitude (and has local minima), which confirms the correctness of choosing the
equation of state for the viscoplastic liquid.

Part of this work was supported by the Russian Foundation for Basic Research — Ural (No. 07-02-96016).

NOTATION

A, ratio between the moments of inertia of the liquid in the viscosimeter and the empty suspended system; Bm =
σ0

 ⁄ (νρq0), Bingham number; b = q0
m−1k ⁄ νρ, dimensionless consistency index; cRe, cIm, weight factors; d = √ν ⁄ q0 , natu-

ral length scale, thickness of the boundary layer, m; D, dimensionless rate of shear; D
~

, half-period-averaged value of D at
ξ = ξ0; F, viscosimetric function; f, quality function; G, shear modulus, Pa; Ilω, intensity of harmonic lω (l = 1, 2, ...); i =
√−1 , imaginary unit; J1,2, first- and second-order Bessel functions of the first kind; k, constant of the power rheological
law, kg⋅secm−2 ⁄ m; K, moment of inertia of the empty suspended system, kg⋅m2; M, mass of the liquid, kg; m, exponent of
the power rheological law; N, vibration number; n, half-period number; q0 = 2π ⁄ τ0, vibration frequency of the empty
cylinder, rad/sec; R, internal radius of the cylinder, m; S, pre-exponential factor in the vibration law; s = (∆ + i) ⁄ λ, factor
corresponding to the regular regime; T = q0t, dimensionless time; t, time, sec; tτ, difference between two adjacent instants
of time when α D 0, sec; We = θq0, Weissenberg number; α, angular displacement of the crucible from the equilibrium
position, rad; α1, α2, adjacent extreme values of α (α1 > α2); γ, ϕ, coefficients of the viscosimetric equation taking
into account the influence of liquid properties and vibration parameters; δ, logarithmic decrement of cylinder vibrations at
M ≠ 0; δ0, logarithmic decrement of empty cylinder vibrations; ∆ = δ ⁄ (2π), logarithmic decrement; ∆x, error in the pa-
rameter x measurement; λ = τ ⁄ τ0, dimensionless vibration period; ν, kinematic viscosity of the medium, m2 ⁄ sec; θ =
ρν ⁄ G, relaxation (or delay) time, sec; ρ, medium density, kg ⁄ m3; σ0, yield point, kg ⁄ (m⋅sec2); τ, vibration period of the
cylinder at M≠ 0, sec; τ0, natural period, sec; ω = 1 ⁄ λ, dimensionless vibration frequency; ξ0, ratio of the radius to the
thickness of the boundary layer; ψy,x, sensitivity of the parameter y to x. Subscripts: 0, natural vibrations as well as
initial-boundary conditions: ξ0, on the cylinder wall; α0, at the initial instant of time; Re and Im, real and imaginary parts;
δ, maximum of δ = δ(ξ0); vp, viscoplastic; nv, nonlinear viscous; sf, solid flow; eff, effective.
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